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We present the results of our QCD analysis for nonsinglet unpolarized quark distributions and structure

function F2ðx;Q2Þ. New parameterizations are derived for the nonsinglet quark distributions for the

kinematic wide range of x and Q2. The analysis is based on the Jacobi polynomials expansion of the

structure function. The higher twist contributions of proton and deuteron structure function are obtained in

the large x region. Our calculations for nonsinglet unpolarized quark distribution functions based on the

Jacobi polynomials method are in good agreement with the other theoretical models. The values of �QCD

and �sðM2
z Þ are determined.
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I. INTRODUCTION

The deep-inelastic lepton–nucleon scattering is the
source of important information about the nucleon’s struc-
ture. New and very precise data on nucleon structure
functions have had a profound impact on our knowledge
of parton distributions, in the small and large x region.
During the last years the accuracy of the obtained experi-
mental data has extensively grown up enough to study in
detail the status of the comparison of the available data
with the theoretical predictions of quantum chromodynam-
ics (QCD) in the different regions of momentum transfer.

The importance of deep-inelastic scattering (DIS) for
QCD goes well beyond the measurement of �s [1]. In the
past it played a crucial role in establishing the reality of
quarks and gluons as partons and in promoting QCD as the
theory of strong interactions. Nowadays it still generates
challenges to QCD as, for example, in the domain of
structure functions at small x [2,3] or of polarized structure
functions [4] or of generalized parton densities [5] and
so on.

All calculations of high energy processes with initial
hadrons, whether within the standard model or exploring
new physics, require parton distribution functions (PDF’s)
as an essential input. The reliability of these calculations,
which underpins both future theoretical and experimental
progress, depends on understanding the uncertainties of the
PDF’s. The assessment of PDF’s, their uncertainties, and
extrapolation to the kinematics relevant for future colliders
such as the LHC is an important challenge to high energy
physics in recent years.

The PDF’s are derived from global analysis of experi-
mental data from a wide range of hard processes in the
framework of perturbative QCD. In this work this impor-

tant problem is studied with the help of the method of the
structure function reconstruction over their Mellin mo-
ments, which is based on the expansion of the structure
function in terms of Jacobi polynomials. This method was
developed and applied for QCD analysis [6–16]. The same
method has also been applied in a polarized case in
Refs. [17] and [4,18–21].
In this paper we use the deep-inelastic world data for

nonsinglet QCD analysis to obtain the parton distribution
function up to next-to-next-to-leading order (NNLO) ap-
proximations. The results of the present analysis is based
on the Jacobi polynomials expansion of the nonsinglet
structure function.
The plan of the paper is to give an introduction of the

Jacobi polynomials approach in Sec. II. The method of the
QCD analysis of nonsinglet structure function, based on
Jacobi polynomials, are written down in this section. In
Sec. III we present a brief review of the theoretical formal-
ism of the QCD analysis. A description of the procedure of
the QCD fit of F2 data are illustrated in Sec. IV. Section V
contains final results of the QCD analysis. Our conclusions
are summarized in Sec. VI.

II. JACOBI POLYNOMIALS APPROACH

The evolution equations allow one to calculate the Q2

dependence of the parton distributions provided at a certain
reference pointQ2

0. These distributions are usually parame-

terized on the basis of plausible theoretical assumptions
concerning their behavior near the end points x ¼ 0, 1.
One of the simplest and fastest possibilities in the struc-

ture function reconstruction from the QCD predictions for
its Mellin moments is Jacobi polynomials expansion. The
Jacobi polynomials are especially suitable for this purpose
since they allow one to factor out an essential part of the x
dependence of the structure function into the weight func-
tion [6]. Thus, given the Jacobi moments anðQ2Þ, a struc-
ture function fðx;Q2Þ may be reconstructed in a form of
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the series [7–11]

xfðx;Q2Þ ¼ x�ð1� xÞ� XNmax

n¼0

anðQ2Þ��;�
n ðxÞ; (1)

where Nmax is the number of polynomials and ��;�
n ðxÞ are

the Jacobi polynomials of order n,

��;�
n ðxÞ ¼ Xn

j¼0

cðnÞj ð�;�Þxj; (2)

where cðnÞj ð�;�Þ are the coefficients expressed through �

functions and satisfy the orthogonality relation with the
weight x�ð1� xÞ� as in the following:

Z 1

0
dxx�ð1� xÞ���;�

k ðxÞ��;�
l ðxÞ ¼ �k;l: (3)

For the moment, we note that theQ2 dependence is entirely
contained in the Jacobi moments

anðQ2Þ ¼
Z 1

0
dxxfðx;Q2Þ��;�

k ðxÞ

¼ Xn
j¼0

Z 1

0
dxxjþ1cðnÞj ð�;�Þfðx;Q2Þ

¼ Xn
j¼0

cðnÞj ð�;�Þfðjþ 2; Q2Þ; (4)

obtained by inverting Eq. (1), using Eqs. (2) and (3) and
also definition of moments, fðj;Q2Þ ¼ R

1
0 dxx

j�1fðx;Q2Þ.
Using Eqs. (1)–(4) now, one can relate the structure

function with its Mellin moments

FNmax

2 ðx;Q2Þ ¼ x�ð1� xÞ� XNmax

n¼0

��;�
n ðxÞ

� Xn
j¼0

cðnÞj ð�;�ÞF2ðjþ 2; Q2Þ; (5)

where F2ðjþ 2; Q2Þ are the moments determined in the
next section. Nmax, �, and � have to be chosen so as to
achieve the fastest convergence of the series on the right-
hand side of Eq. (5) and to reconstruct xg1 with the
required accuracy. In our analysis we use Nmax ¼ 9, � ¼
3:0, and � ¼ 0:5. The same method has been applied to
calculate the nonsinglet structure function xF3 from their
moments [12–15] and for polarized structure function xg1
[4,17,18].

Obviously the Q2 dependence of the polarized structure
function is defined by the Q2 dependence of the moments.

III. THEORETICAL FORMALISM OF THE QCD
ANALYSIS

In the commonMS factorization scheme the relevant F2

structure function as extracted from the DIS ep process can
be, up to NNLO, written as [22–25]

F2ðx;Q2Þ ¼ F2;NSðx;Q2Þ þ F2;Sðx; Q2Þ þ F2;gðx;Q2Þ:
(6)

The nonsinglet structure function F2;NSðx;Q2Þ for three

active (light) flavors has the representation

1

x
F2;NSðx;Q2Þ ¼ C2;NSðx;Q2Þ �

�
1

18
qþ8 þ 1

6
qþ3

�
ðx;Q2Þ

¼ ½Cð0Þ
2;q þ aCð1Þ

2;NS þ a2Cð2Þþ
2;NS�

�
�
1

18
qþ8 þ 1

6
qþ3

�
ðx;Q2Þ: (7)

The flavor singlet and gluon contributions in Eq. (6) reads

1

x
F2;Sðx;Q2Þ ¼ 2

9
C2;q � �ðx;Q2Þ

¼ 2

9
½Cð0Þ

2;q þ aCð1Þ
2;q þ a2Cð2Þ

2;q� � �ðx;Q2Þ;
(8)

1

x
F2;gðx;Q2Þ ¼ 2

9
C2;g � gðx;Q2Þ

¼ 2

9
½aCð1Þ

2;g þ a2Cð2Þ
2;g� � gðx;Q2Þ: (9)

The symbol � denotes the Mellin convolution

½A � B�ðxÞ ¼
Z 1

0
dx1

Z 1

0
dx2�ðx� x1x2ÞAðx1ÞBðx2Þ:

(10)

In Eq. (7) qþ3 ¼ uþ �u� ðdþ �dÞ ¼ uv � dv and qþ8 ¼
uþ �uþdþ �d�2ðsþ �sÞ¼uvþdvþ2 �uþ2 �d�4�s, where
s ¼ �s. Also in Eq. (8) �ðx; Q2Þ � �q¼u;d;sðqþ �qÞ ¼ uv þ
dv þ 2 �uþ 2 �dþ 2�s. Notice that in the above equations
a ¼ aðQ2Þ � �sðQ2Þ=4� denotes the strong coupling con-
stant and Ci;jðNÞ are the Wilson coefficients [26].

The combinations of parton densities in the nonsinglet
regime and the valence region x � 0:3 for Fp

2 in LO is

1

x
Fp
2 ðx;Q2Þ ¼

�
1

18
qþNS;8 þ

1

6
qþNS;3

�
ðx;Q2Þ þ 2

9
�ðx;Q2Þ;

(11)

where qþNS;3 ¼ uv � dv, q
þ
NS;8 ¼ uv þ dv, and � ¼ uv þ

dv, since sea quarks can be neglected in the region x � 0:3.
So in the x space we have

Fp
2 ðx;Q2Þ ¼

�
5

18
xqþNS;8 þ

1

6
xqþNS;3

�
ðx;Q2Þ

¼ 4

9
xuvðx;Q2Þ þ 1

9
xdvðx;Q2Þ: (12)

In the above region the combinations of parton densities
for Fd

2 are also given by
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Fd
2 ðx;Q2Þ ¼

�
5

18
xqþNS;8

�
ðx;Q2Þ ¼ 5

18
xðuv þ dvÞðx; Q2Þ;

(13)

where d ¼ ðpþ nÞ=2 and qþNS;3 ¼ uv � dv.

In the region x � 0:3 for the difference of the proton and
deuteron data we use

FNS
2 ðx;Q2Þ � 2ðFp

2 � Fd
2Þðx;Q2Þ ¼ 1

3
xqþNS;3ðx;Q2Þ

¼ 1

3
xðuv � dvÞðx;Q2Þ þ 2

3
xð �u� �dÞðx;Q2Þ;

(14)

where now qþNS;3 ¼ uv � dv þ 2ð �u� �dÞ since sea quarks

cannot be neglected for x smaller than about 0.3. In our
calculation we supposed the �d� �u distribution

xð �d� �uÞðx; Q2
0Þ ¼ 1:195x1:24ð1� xÞ9:10

� ð1þ 14:05x� 45:52x2Þ; (15)

at Q2
0 ¼ 4 GeV2 which gives a good description of the

Drell–Yan dimuon production data [27]. In our analysis
we used the above distribution for considering the symme-
try breaking of sea quarks [28,29]. By using the solution of
the nonsinglet evolution equation for the parton densities to
3-loop order [30], the nonsinglet structure functions are
given by

Fk
2ðN;Q2Þ ¼ ð1þ aCð1Þ

2;NSðNÞ þ a2Cð2Þ
2;NSðNÞÞFk

2ðN;Q2
0Þ
�
a

a0

��P̂0ðNÞ=�0
�
1� 1

�0

ða� a0Þ
�
P̂þ
1 ðNÞ � �1

�0

P̂0

�

� 1

2�0

ða2 � a20Þ
�
P̂þ
2 ðNÞ � �1

�0

P̂þ
1 þ

�
�2

1

�2
0

� �2

�0

�
P̂0ðNÞ

�
þ 1

2�2
0

ða� a0Þ2
�
P̂þ
1 ðNÞ � �1

�0

P̂0

�
2
�
: (16)

Here k ¼ p, d, and NS denotes the three above cases, i.e.
proton, deuteron and nonsinglet structure function.
CðmÞ
2;NSðNÞ are the nonsinglet Wilson coefficients in Oðams Þ

which can be found in [26,31,32] and P̂m denote also the
Mellin transforms of the ðmþ 1Þ-loop splitting functions.

The strong coupling constant as plays a more central
role in the present paper to the evolution of parton den-
sities. At NmLO the scale dependence of as is given by

das
d lnQ2 ¼ �NmLOðasÞ ¼ �Xm

k¼0

akþ2
s �k: (17)

The expansion coefficients �k of the � function of QCD
are known up to k ¼ 2, i.e., N2LO [33,34]

�0 ¼ 11� 2=3nf; �1 ¼ 102� 38=3nf;

�2 ¼ 2857=2� 5033=18nf þ 325=54n2f:
(18)

Here nf stands for the number of effectively massless

quark flavors. The strong coupling constant up to NNLO
is as follows [35]:

asðQ2Þ ¼ 1

�0L�

� 1

ð�0L�Þ2
b1lnL�

þ 1

ð�0L�Þ3
½b21ðln2L� � lnL� � 1Þ þ b2�; (19)

where L� � lnðQ2=�2Þ, bk � �k=�0, and � is the QCD
scale parameter.

IV. THE PROCEDURE OF THE QCD FITS
OF F2 DATA

In the present analysis we choose the following parame-
trization for the valence quark densities:

xuvðx;Q2
0Þ ¼ N ux

auð1� xÞbuð1þ cu
ffiffiffi
x

p þ duxÞ;
xdvðx;Q2

0Þ ¼ N dx
adð1� xÞbdð1þ cd

ffiffiffi
x

p þ ddxÞ;
(20)

in the input scale of Q2
0 ¼ 4 GeV2 and the normalizations

N u and N d being fixed by
R
1
0 uvdx ¼ 2 and

R
1
0 dvdx ¼

1, respectively. By QCD fits of the world data for Fp;d
2 , we

can extract valence quark densities using the Jacobi poly-
nomials method. For the nonsinglet QCD analysis pre-
sented in this paper we use the structure function data
measured in charged lepton proton and deuteron deep-
inelastic scattering. The experiments contributing to the
statistics are BCDMS [36], SLAC [37], NMC [38], H1
[39], and ZEUS [40]. In our QCD analysis we use three
data samples: Fp

2 ðx;Q2Þ, Fd
2 ðx;Q2Þ in the nonsinglet re-

gime and the valence quark region x � 0:3 and FNS
2 ¼

2ðFp
2 � Fd

2 Þ in the region x < 0:3.
The valence quark region may be parameterized by the

nonsinglet combinations of parton distributions, which are
expressed through the parton distributions of valence
quarks. Only data with Q2 > 4 GeV2 were included in
the analysis and a cut in the hadronic mass of W2 � ð1x �
1ÞQ2 þm2

N > 12:5 GeV2 was applied in order to widely
eliminate higher twist (HT) effects from the data samples.
After these cuts we are left with 762 data points, 322 for
Fp
2 , 232 for Fd

2 , and 208 for FNS
2 . By considering the

additional cuts on the BCDMS (y > 0:35) and on the
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NMC data (Q2 > 8 GeV2) the total number of data points
available for the analysis reduce from 762 to 551.

The simplest possible choice for the �2 function would
be

�2 ¼ Xndata
i¼1

ðFdata
2;i � Ftheor

2;i Þ2
ð�Fdata

2;i Þ2 ; (21)

where �Fdata
2;i is the error associated with data point i.

Through Ftheor
2;i , �2 is a function of the theory parameters.

Minimization of �2 would identify parameter values for
which the theory fits the data. However, the simple form is
appropriate only for the ideal case of a uniform data set
with uncorrelated errors. For data used in the global analy-
sis, most experiments combine various systematic errors
into one effective error for each data point, along with the

statistical error. Then, in addition, the fully correlated
normalization error of the experiment is usually specified
separately. For this reason, it is natural to adopt the follow-
ing definition for the effective �2 [41]:

�2
global ¼

X
n

wn�
2
n ðn labels the different experimentsÞ;

(22)

�2
n ¼

�
1�N n

�N n

�
2 þX

i

�N nF
data
2;i � Ftheor

2;i

N n�F
data
2;i

�
2
: (23)

For the nth experiment, Fdata
2;i , �Fdata

2;i , and Ftheor
2;i denote

the data value, measurement uncertainty (statistical and
systematic combined), and theoretical value for the ith
data point. �N n is the experimental normalization uncer-

TABLE I. Number of experimental data points (a) Fp
2 , (b) F

d
2 , and (c) FNS

2 for the nonsinglet QCD analysis with their x and Q2

ranges. The name of different data sets and range of x and Q2 are given in the three first columns. The fourth column (F2) contains the
number of data points according to the cuts: Q2 > 4 GeV2, W2 > 12:5 GeV2, x > 0:3 for Fp

2 and Fd
2 and x < 0:3 for FNS

2 . The

reduction of the number of data points by the additional cuts (see text) are given in the fifthth column (F2 cuts). The normalization
shifts are listed in the last column.

(a) Number of Fp
2 data points.

Experiment x Q2, GeV2 Fp
2 Fp

2 cuts N

BCDMS (100) 0.35–0.75 11.75–75.00 51 29 1.005

BCDMS (120) 0.35–0.75 13.25–75.00 59 32 0.998

BCDMS (200) 0.35–0.75 32.50–137.50 50 28 0.998

BCDMS (280) 0.35–0.75 43.00–230.00 49 26 0.998

NMC (comb) 0.35–0.50 7.00–65.00 15 14 1.000

SLAC (comb) 0.30–0.62 7.30–21.39 57 57 1.013

H1 (hQ2) 0.40–0.65 200–30000 26 26 1.020

ZEUS (hQ2) 0.40–0.65 650–30000 15 15 1.007

proton 322 227

(b) Number of Fd
2 data points.

Experiment x Q2, GeV2 Fd
2 Fd

2 cuts N

BCDMS (120) 0.35–0.75 13.25–99.00 59 32 1.001

BCDMS (200) 0.35–0.75 32.50–137.50 50 28 0.998

BCDMS (280) 0.35–0.75 43.00–230.00 49 26 1.003

NMC (comb) 0.35–0.50 7.00–65.00 15 14 1.000

SLAC (comb) 0.30–0.62 10.00–21.40 59 59 0.990

deuteron 232 159

(c) Number of FNS
2 data points.

Experiment x Q2, GeV2 FNS
2 FNS

2 cuts N

BCDMS (120) 0.070–0.275 8.75–43.00 36 30 0.983

BCDMS (200) 0.070–0.275 17.00–75.00 29 28 0.999

BCDMS (280) 0.100–0.275 32.50–115.50 27 26 0.997

NMC (comb) 0.013–0.275 4.50–65.00 88 53 1.000

SLAC (comb) 0.153–0.293 4.18–5.50 28 28 0.994

nonsinglet 208 165
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tainty and N n is an overall normalization factor for the
data of experiment n. The factor wn is a possible weighting
factor (with default value 1). However, we allowed for a
relative normalization shiftN n between the different data
sets within the normalization uncertainties �N n quoted
by the experiments. For example the normalization uncer-
tainty of the NMC (combined) data is estimated to be 2.5%.
The normalization shifts N n were fitted once and then
kept fixed.

The number of data points for the nonsinglet QCD
analysis with their x and Q2 ranges and the normalization
shifts determined are summarized in Table I. In this table
the first column gives (in parentheses) the beam momen-
tum in GeV of the respective data set (number), a flag
whether the data come from a combined analysis of all
beam momenta (comb) or whether the data are taken at
high momentum transfer (hQ2). The x and Q2 range in-
dicate in the second and third columns, respectively. The
fourth column (F2) contains the number of data points
according to the cuts: Q2 > 4 GeV2, W2 > 12:5 GeV2,
x > 0:3 for Fp

2 and Fd
2 and x < 0:3 for FNS

2 . The reduction

of the number of data points by the additional cuts on the
BCDMS data (y > 0:3) and on the NMC data (Q2 >
8 GeV2) are given in the fifth column (F2 cuts). The last
column (N ) contains the normalization shifts.

Now the sums in �2
global run over all data sets and in each

data set over all data points. The minimization of the above
�2 value to determine the best parametrization of the
unpolarized parton distributions is done using the program
MINUIT [42].

The one � error for the parton density fq as given by

Gaussian error propagation is [30]

�ðfqðxÞÞ2 ¼
Xnp
i¼1

Xnp
j¼1

�
@fq
@pi

��
@fq
@pj

�
covðpi; pjÞ; (24)

where the sum runs over all fitted parameters. The func-
tions @fq=@pi are the derivatives of fq with respect to the

fit parameter pi, and covðpi; pjÞ are the elements of the

covariance matrix. The derivatives @fq=@pi can be calcu-

lated analytically at the input scale Q2
0. Their values at Q

2

are given by evolution which is performed in Mellin–N
space.

V. RESULTS

In the QCD analysis of the present paper we used three
data sets: the structure functions Fp

2 ðx;Q2Þ and Fd
2 ðx;Q2Þ

in the region of x � 0:3 and the combination of these
structure functions FNS

2 ðx;Q2Þ in the region of x < 0:3.
Notice that we take into account the cuts Q2 > 4 GeV2,
W2 > 12:5 GeV2 for our QCD fits to determine some
unknown parameters. In Fig. 1 the proton data for
F2ðx;Q2Þ are shown in the nonsinglet regime and the
valence quark region x � 0:3 indicating the above cuts

by a vertical dashed line. The solid lines correspond to
the NNLO QCD fit.
Now it is possible to take into account the target mass

effects in our calculations. The perturbative form of the
moments is derived under the assumption that the mass of
the target hadron is zero (in the limit Q2 ! 1). At inter-
mediate and low Q2 this assumption will begin to break
down and the moments will be subject to potentially sig-
nificant power corrections, of order Oðm2

N=Q
2Þ, where mN

is the mass of the nucleon. These are known as target mass
corrections (TMCs) and when included, the moments of
flavor nonsinglet structure function have the form [43,44]

Fk
2;TMCðn;Q2Þ �

Z 1

0
xn�2Fk

2;TMCðx;Q2Þdx

¼ Fk
2ðn;Q2Þþ nðn� 1Þ

nþ 2

�
m2

N

Q2

�
Fk
2ðnþ 2;Q2Þ

þ ðnþ 2Þðnþ 1Þnðn� 1Þ
2ðnþ 4Þðnþ 3Þ

�
m2

N

Q2

�
2

�Fk
2ðnþ 4;Q2ÞþO

�
m2

N

Q2

�
3
; (25)

where higher powers than ðm2
N=Q

2Þ2 are negligible for the

10
2

10
3

10
4

10
5

Q
2
(GeV

2
)

0.001

0.01

0.1

1

10

BCDMS
SLAC
H1
ZEUS
NMC

NNLO
QCD

QCD+TMC

x=0.75 , c=1

x=0.65 , c=1.5

x=0.55 , c=3

x=0.45 , c=6

x=0.35 , c=15

F
2

p
 x c

W
2
 > 12.5 GeV

2

1 10

QCD+TMC+HT

FIG. 1 (color online). The structure function Fp
2 as a function

of Q2 in intervals of x. Shown are the pure QCD fit in NNLO
(solid line) and the contributions from target mass corrections
(dashed line) and higher twist (dashed-dotted line). The vertical
dashed line indicates the regions with W2 > 12:5 GeV2.
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relevant x < 0:8 region. By inserting Eq. (25) in Eq. (5) we
have

FNmax;k
2 ðx;Q2Þ ¼ x�ð1� xÞ� XNmax

n¼0

��;�
n ðxÞ

� Xn
j¼0

cðnÞj ð�;�ÞFk
2;TMCðjþ 2; Q2Þ; (26)

where Fk
2;TMCðjþ 2; Q2Þ are the moments determined by

Eq. (25). In Fig. 1 the dashed lines correspond to the
NNLO QCD fit adding target mass corrections.

Despite the kinematic cuts [Q2 � 4 GeV2, W2 � ð1x �
1ÞQ2 þm2

N � 12:5 GeV2] used for our analysis, we also
take into account higher twist corrections to Fp

2 ðx;Q2Þ and
Fd
2 ðx;Q2Þ in the kinematic region Q2 � 4 GeV2, 4<

W2 < 12:5 GeV2 in order to learn whether nonperturbative
effects may still contaminate our perturbative analysis. For
this purpose we extrapolate the QCD fit results obtained for
W2 � 12:5 GeV2 to the region Q2 � 4 GeV2, 4<W2 <
12:5 GeV2 and form the difference between data and the-
ory, applying target mass corrections in addition. Now by
considering higher twist correction (HT)

F
exp
2 ðx;Q2Þ ¼ OTMC½FHT

2 ðx;Q2Þ� �
�
1þ hðx;Q2Þ

Q2 ½GeV2�
�
;

(27)

the higher twist coefficient can be extract. Here the opera-
tion OTMC½. . .� denotes taking the target mass corrections
of the twist-2 contributions to the respective structure
function. The coefficients hðx;Q2Þ are determined in bins
of x andQ2 and are then averaged overQ2. We extrapolate
our QCD fits to the region 12:5 GeV2 � W2 � 4 GeV2 in
Fig. 1. The dashed-dotted lines in this figure correspond to
the NNLO QCD fit adding target mass and higher twist
corrections. There, at higher values of x a clear gap be-
tween the data and the QCD fit is seen. Fig. 2 shows the
corresponding results for the deuteron data. Figure 3 shows
the result of the pure QCD fit for the nonsinglet structure
function in NNLO.
In Table II we summarize the LO, NLO, and NNLO fit

results without HT contributions for the parameters of the

parton densities xuvðx;Q2
0Þ, xdvðx;Q2

0Þ, and �Nf¼4
QCD . The

resulted value of �2=ndf is 0.9853 at LO, 0.9578 at NLO,
and 0.9267 at NNLO. Our results for covariance matrix for
LO, NLO, and NNLO are presented in Table III.
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Figure 4 illustrates our fit results for xuvðx;Q2
0Þ,

xdvðx;Q2
0Þ at Q2

0 ¼ 4 GeV2 at NNLO with correlated er-

rors. We compare with the results of [30,44,45] and a very
recent analysis [46]. Our results for xuvðx; Q2

0Þ and

xdvðx;Q2
0Þ are in good agreement with the other theoretical

model at the one � level.
In Figs. 5 and 6 we show the evolution of the valence

quark distributions xuvðx;Q2Þ and xdvðx;Q2Þ from Q2 ¼
10 GeV2 toQ2 ¼ 104 GeV2 in the region x 2 ½10�4; 1� up
to NNLO. We also compared with other QCD analysis
[30,45–47]. With rising values of Q2 the distributions
flatten at large values of x and rise at low values.

Another way to compare the NNLO fit results consists in
forming moments of the distributions uvðx;Q2Þ, dvðx;Q2Þ.
In Table IV we present the lowest nontrivial moments of
these distributions at Q2 ¼ Q2

0 in NNLO and compare to

the respective moments obtained for the parameterizations
[30,47–49].
To perform higher twist QCD analysis of the nonsinglet

world data up to NNLO, we consider the Q2 � 4 GeV2,
4<W2 < 12:5 GeV2 cuts. The number of data points in
the above range for proton and deuteron is 279 and 278,
respectively. The extracted distributions for hðxÞ up to
NNLO are depicted in Fig. 7 for the nonsinglet case con-

TABLE II. Parameter values of the LO, NLO, and NNLO nonsinglet QCD fit at Q2
0 ¼ 4 GeV2. The values without error have been

fixed after a first minimization since the data do not constrain these parameters well enough (see text).

LO NLO NNLO

uv au 0:6698	 0:0073 0:7434	 0:009 0:7772	 0:009
bu 3:5104	 0:042 3:8907	 0:040 4:0034	 0:033
cu 0.1990 0.1620 0.1000

du 1.498 1.2100 1.1400

dv ad 0:6850	 0:035 0:7369	 0:040 0:7858	 0:043
bd 3:1685	 0:192 3:5051	 0:225 3:6336	 0:244
cd 0.5399 0.3899 0.1838

dd �1:4000 �1:3700 �1:2152

�Nf¼4
QCD , MeV 213:2	 28 263:8	 30 239:9	 27

�2=ndf 538=546 ¼ 0:9853 523=546 ¼ 0:9578 506=546 ¼ 0:9267

TABLE III. Our results for the covariance matrix of the LO, NLO, and NNLO nonsinglet QCD fit at Q2
0 ¼ 4 GeV2 by using MINUIT

[42].

LO au bu ad bd �Nf¼4
QCD

au 5:28� 10� 5
bu 1:65� 10� 4 1:73� 10� 3
ad �7:39� 10� 5 �4:55� 10� 4 1:23� 10� 3
bd �2:64� 10� 4 �2:12� 10� 3 6:15� 10� 3 3:67� 10� 2
�ð4Þ

QCD 1:90� 10� 5 �8:34� 10� 4 2:39� 10� 5 �3:16� 10� 4 7:79� 10� 4

NLO au bu ad bd �Nf¼4
QCD

au 8:87� 10� 5
bu 2:39� 10� 4 1:63� 10� 3
ad �1:34� 10� 4 �7:86� 10� 4 1:61� 10� 3
bd �5:10� 10� 4 �4:19� 10� 3 8:33� 10� 3 5:07� 10� 2
�ð4Þ

QCD 8:71� 10� 5 �5:39� 10� 4 8:09� 10� 5 2:57� 10� 4 8:80� 10� 4

NNLO au bu ad bd �Nf¼4
QCD

au 7:61� 10� 5
bu 1:73� 10� 4 1:10� 10� 3
ad �8:41� 10� 5 �6:62� 10� 4 1:85� 10� 3
bd �2:73� 10� 4 �3:73� 10� 3 9:79� 10� 3 5:98� 10� 2
�ð4Þ

QCD 1:08� 10� 4 �2:74� 10� 4 1:06� 10� 4 4:19� 10� 4 7:41� 10� 4
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sidering scattering off the proton target. According to our
results the coefficient hðxÞ grows towards large x. Also in
this figure HT contributions have the tendency to decrease
form LO to NLO, NNLO. This effect was observed for the
first time in the case of fits of F3 DIS �N data in [12] and
then studied in more detail in [14,15].

This similar effect was also observed in the fits of F2

charge lepton-nucleon DIS data [30,44,50,51]. To com-
pare, we also present the reported results of the early
NNLO analysis [44,51] in Fig. 7. Note that the results for
hðxÞ in LO are not presented in the BBG model [30,51]. In
Ref. [44], the functional form for hðxÞ is chosen by

hðxÞ ¼ a

�
xb

1� x
� c

�
; (28)

and it is possible to compare hðxÞ results even in LO.
Figure 8 shows our results for hðxÞ and for the deuteron
target up to NNLO. Also we compare the results for the
BBGmodel [51]. The same as the proton, HT contributions
for the deuteron have the tendency to decrease form LO to
NLO, NNLO. As seen from Figs. 7 and 8 hðxÞ is widely
independent of the target comparing the results for deeply
inelastic scattering off protons and deuterons. Our results
in low-x are also in good agreement with [30,51].

VI. DISCUSSION

We have performed a QCD analysis of the flavor non-
singlet unpolarized deep-inelastic charged lepton-nucleon
scattering data to next-to-leading order and derived param-
eterizations of valence quark distributions at a starting
scale Q2

0 together with the QCD scale �QCD by using the

Jacobi polynomial expansions.
The analysis was performed using the Jacobi polyno-

mials method to determine the parameters of the problem
in a fit to the data. A new aspect in comparison with
previous analysis is that we determine the parton densities
and the QCD scale up to NNLO by using the Jacobi
polynomial expansion method. The benefit of this ap-
proach is the possibility to determine nonsinglet parton
distributions analytically and not numerically. In
Ref. [52] we arrange the MATHEMATICA program to extract
xuvðx; Q2Þ and xdvðx;Q2Þ.
In this paper the flavor asymmetric combination of light

parton distributions xð �d� �uÞ of Eq. (15) are fixed at Q2
0 ¼

4 GeV2, as GRS [44] and BBG [29,30] applied, and gives a
good description of the Drell-Yan dimuon production data
[53]. The first clear evidence for the flavor asymmetry of
the nucleon sea in nature came from the analysis of NMC
at CERN [54]. In order to have the link with NMC data, we
want to study the compatibility of the xð �d� �uÞ with the
NMC result for the Gottfried sum rule (GSR) [55]. This
sum rule is still actively discussed in problems of deep-
inelastic scattering. The GSR, IGSR, can be expressed in
terms of the parton distribution functions as

IGSRðQ2Þ �
Z 1

0
½Flp

2 ðx;Q2Þ � Fln
2 ðx;Q2Þ�dx

x

¼
Z 1

0

�
1

3
ðuvðx;Q2Þ � dvðx;Q2ÞÞ

þ 2

3
ð �uðx;Q2Þ � �dðx;Q2ÞÞ

�
dx

¼ 1

3
þ 2

3

Z 1

0
ð �uðx;Q2Þ � �dðx;Q2ÞÞdx: (29)

In the derivation of the above equation, the asymmetry of
nucleon sea was assumed. The NMC measurement [54]
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FIG. 4 (color online). The parton densities xuv and xdv at the
input scale Q2

0 ¼ 4:0 GeV2 (solid line) compared to results

obtained from NNLO analysis by BBG (dashed-line) [30],
A05 (dashed-dotted line) [45], MRST (dashed-dotted-dotted
line) [46], and GRS (dashed-dashed-dotted line) [44]. The
shaded areas represent the fully correlated one � statistical error
bands.
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implies at Q2 ¼ 4 GeV2

Z 1

0
ð �dðx;Q2Þ � �uðx;Q2ÞÞdx ¼ 0:148	 0:039; (30)

which was the first indication that there are more down
antiquarks in the proton than up antiquarks. On the other
hand, this value is reported 0:118	 0:012 at Q2 ¼
54 GeV2 [27]. Now it is interesting to obtain this value
for the parametrization of Eq. (15) which we used in our
QCD analysis. By integration of this distribution we obtain
’ 0:1 which is smaller than the reported results in the
literature. However, the NMC Collaboration gives the
IGSR experimental value at Q2 ¼ 4 GeV2 [54]

I
exp
GSRðQ2 ¼ 4 GeV2Þ ¼ 0:235	 0:026: (31)

By using Eq. (29) we obtain the GSR value of about 0.267
with which the existing measurements are almost compat-
ible within error. It seems that although the value of

R
1
0ð �d�

�uÞdx is smaller than the values in the literature, the pa-
rametrization of Eq. (15) can give a good description of the
E866 experimental data [27]. Also we should notice that
the GSR does not belong to the strict sum rules in QCD and
it is necessary to receive not only QCD corrections but
anomalous dimensions as well [56–61].
Now it is interesting to compare the NNLO theoretical

QCD theoretical prediction for the Gottfried sum rule [58]
with NMC data. The recent step in this direction was done
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FIG. 5 (color online). The parton density xuv at NNLO evolved up to Q2 ¼ 10; 000 GeV2 (solid lines) compared with results
obtained by A05 (dashed line) [45], BBG (dashed-dotted line) [30], and MRST (dashed-dotted-dotted line) [46,47].
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in [62]. According to this paper we add the QCD two-loop
correction to the Gottfried sum rule and we refine the GSR
value to about 0.12%. Also we obtain the value of
IGSRð0:004< x< 0:8; 4 GeV2Þ ¼ 0:267 which is well

compatible with the neural parametrization results, e.g.
0:2281	 0:0437 [62] within errors.
In the QCD analysis we parameterized the strong cou-

pling constant �s in terms of four massless flavors deter-
mining �QCD. The LO, NLO, and NNLO results fitting the
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FIG. 6 (color online). The parton density xdv at NNLO evolved up to Q2 ¼ 10 000 GeV2 (solid lines) compared to results obtained
by A05 (dashed line) [45], BBG (dashed-dotted line) [30], and MRST (dashed-dotted-dotted line) [46,47].

TABLE IV. Comparison of low order moments from our nonsinglet NNLO QCD analysis at Q2
0 ¼ 4 GeV2 with the NNLO analysis

BBG [30], MRST04 [47], A02 [48], and A06 [49].

f N NNLO BBG MRST04 A02 A06

uv 2 0:3056	 0:0023 0:2986	 0:0029 0.285 0.304 0.2947

3 0:0871	 0:0009 0:0871	 0:0011 0.082 0.087 0.0843

4 0:0330	 0:0004 0:0333	 0:0005 0.032 0.033 0.0319

dv 2 0:1235	 0:0023 0:1239	 0:0026 0.115 0.120 0.1129

3 0:0298	 0:0008 0:0315	 0:0008 0.028 0.028 0.0275

4 0:0098	 0:0004 0:0105	 0:0004 0.009 0.010 0.0092
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data are

�ð4ÞMS
QCD ¼ 213:2	 28 MeV; LO;

�ð4ÞMS
QCD ¼ 263:8	 30 MeV; NLO;

�ð4ÞMS
QCD ¼ 239:9	 27 MeV; NNLO;

(32)

These results can be expressed in terms of �sðM2
ZÞ:

�sðM2
ZÞ ¼ 0:1281	 0:0028; LO;

�sðM2
ZÞ ¼ 0:1149	 0:0021; NLO;

�sðM2
ZÞ ¼ 0:1131	 0:0019; NNLO:

(33)

Note that in above results we use the matching between nf
and nfþ1 flavor couplings calculated in Ref. [63]. To be

capable to compare with other measurement of �QCD we

adopt this prescription.
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The �sðM2
ZÞ values can be compared with results from other QCD analysis of inclusive deep–inelastic scattering data in

NLO
A02 [48] �sðM2

ZÞ ¼ 0:1171	 0:0015,
ZEUS [64] �sðM2

ZÞ ¼ 0:1166	 0:0049,
H1 [39] �sðM2

ZÞ ¼ 0:1150	 0:0017,
BCDMS [36] �sðM2

ZÞ ¼ 0:110	 0:006,
GRS [44] �sðM2

ZÞ ¼ 0:112,
CTEQ6 [65] �sðM2

ZÞ ¼ 0:1165	 0:0065,
MRST03 [66] �sðM2

ZÞ ¼ 0:1165	 0:0020,
BBG [30] �sðM2

ZÞ ¼ 0:1148	 0:0019,
KK05 [67] �sðM2

ZÞ ¼ 0:1153	 0:0013ðstatÞ 	 0:0022ðsystÞ 	 0:0012ðnormÞ,
BB(pol) [68] �sðM2

ZÞ ¼ 0:113	 0:004,
AK(pol) [4] �sðM2

ZÞ ¼ 0:1141	 0:0036.
The NNLO values of �sðM2

ZÞ can also be compared with results from other QCD analysis:
A02 [48] �sðM2

ZÞ ¼ 0:1143	 0:0014,
GRS [44] �sðM2

ZÞ ¼ 0:111,
MRST03 [66] �sðM2

ZÞ ¼ 0:1153	 0:0020,
SY01(ep) [69] �sðM2

ZÞ ¼ 0:1166	 0:0013,
SY01(�N) [69] �sðM2

ZÞ ¼ 0:1153	 0:0063,
A06 [49] �sðM2

ZÞ ¼ 0:1128	 0:0015,
BBG [30] �sðM2

ZÞ ¼ 0:1134þ0:0019
�0:0021,

BM07 [70] �sðM2
ZÞ ¼ 0:1189	 0:0019,

KPS00(�N) [14] �sðM2
ZÞ ¼ 0:118	 0:002ðstatÞ 	 0:005ðsystÞ 	 0:003ðtheoryÞ,

KPS03(�N) [15] �sðM2
ZÞ ¼ 0:119	 0:002ðstatÞ 	 0:005ðsystÞ 	 0:002ðthresholdÞþ0:004

�0:002ðscaleÞ,

and with the value of the current world average

�sðM2
ZÞ ¼ 0:1189	 0:0010; (34)

which has been extracted in [71] recently.
We hope our results of QCD analysis of structure func-

tions in terms of Jacobi polynomials could be able to
describe more complicated hadron structure functions.
We also hope to be able to consider the N3LO corrections
and massive quark contributions by using the structure
function expansion in terms of the Jacobi polynomials.
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